Skip to main content
 

NIH Director’s Lecture

The Director’s Lectures feature leading researchers from around the globe. Nominated by scientists and interest groups throughout NIH, the speakers are specifically approved by the NIH Director. There are typically three NIH Director’s Lectures per year.

Immune checkpoint blockade in cancer therapy:  historical perspective, new opportunities, and prospects for cures

March 11, 2020 - 3:00pm to 4:00pm
James P. Allison, Ph.D., MD Anderson Cancer Center, University of Texas

TBD

February 5, 2020 - 3:00pm to 4:00pm
Mona Singh, Ph.D., Lewis Sigler Institute for Integrative Genomics

Brain Machine Interfaces: from basic science to neuroprostheses and neurological recovery

October 16, 2019 - 3:00pm to 4:00pm
Miguel A. Nicolelis, M.D., Ph.D., Duke University Medical Center

Dr. Nicolelis has dedicated his career to investigating how the brains of freely behaving animals encode sensory and motor information. As a result of his studies, Dr. Nicolelis was first to propose and demonstrate that animals and human subjects can utilize their electrical brain activity to directly control neuroprosthetic devices via brain-machine interfaces (BMI).

Autoantigens and autoimmunity: a bedside to bench and back again story

June 26, 2019 - 3:00pm to 4:00pm
Sandra L. Wolin, M.D., Ph.D., National Cancer Institute

Noncoding RNAs play critical roles in the metabolism of all cells. The Wolin laboratory studies how noncoding RNAs function, how cells recognize and degrade defective noncoding RNAs, and how failure to degrade these RNAs affects cell function and contributes to human disease. Their studies revealed new mechanisms by which defective RNAs are targeted for degradation and new classes of noncoding RNAs. Most recently, their work has contributed to a novel theory for how the autoimmune disease systemic lupus erythematosus may be triggered in genetically susceptible individuals.

Cancer and aging: rival demons?

February 13, 2019 - 3:00pm to 4:00pm
Judith Campisi, Ph.D. , Buck Institute for Research on Aging

Cancer and aging are intricately intertwined. Organisms with dividing cells are at substantial risk for developing cancer. Evolution "solved" the cancer problem by selecting for tumor-suppressive mechanisms, which protect these organisms from cancer—at least for the reproductively active portion of the life span. Beyond that portion of the life span, these mechanisms can drive pathologies associated with aging, including, ironically, cancer. For her lecture, Dr.

Endoplasmic reticulum and immunometabolic homeostasis

November 13, 2018 - 3:00pm to 4:00pm
Gokhan S. Hotamisligil, M.D., Ph.D. , Harvard T.H. Chan School of Public Health

The major interest of Dr. Hotamisligil's laboratory is to study the regulatory pathways, which control glucose and lipid metabolism. His lab's biochemical and genetic studies focus on signal transduction using cultured mammalian cells as well as transgenic animals to identify specific abnormalities in these pathways, which are involved in human metabolic and inflammatory diseases including obesity, diabetes, fatty liver disease, atherosclerosis, and asthma.

Exploring adult brain plasticity following adverse developmental conditions

June 13, 2018 - 3:00pm to 4:00pm
Elizabeth Gould, Ph.D., Princeton University

Our laboratory studies structural plasticity in the adult mammalian brain. We are interested in identifying the environmental, hormonal and neural stimuli that drive changes in the number, shape and size of neurons, astrocytes and microglia. The ultimate goals of our work are to determine the functional consequences of structural plasticity and to identify factors that enhance plasticity and cell survival in the adult mammalian brain.

Gut reactions: host microbiome interactions in the intestine in health and disease

March 14, 2018 - 3:00pm to 4:00pm
Fiona Powrie, D.Phil., University of Oxford

The gastrointestinal tract is home to a large number and vast array of bacteria that play an important role in nutrition, immune-system development, and host defense. In inflammatory bowel disease there is a breakdown in this mutualistic relationship resulting in aberrant inflammatory responses to intestinal bacteria. Studies in model systems indicate that intestinal homeostasis is an active process involving a delicate balance between effector and immune suppressive pathways. For her presentation, Dr.

The molecular logic of synapse formation in the brain

January 31, 2018 - 3:00pm to 4:00pm
Thomas Christian Südhof, M.D., Stanford School of Medicine

Thomas Südhof is interested in how synapses form and function in the developing and adult brain. His work focuses on the role of synaptic cell-adhesion molecules in establishing synapses and shaping their properties, on pre- and postsynaptic mechanisms of membrane traffic, and on impairments in synapse formation and synaptic function in neuropsychiatric and neurodegenerative disorders.

Biophysics and biology of k+ channels

September 27, 2017 - 3:00pm to 4:00pm
Roderick MacKinnon, M.D., Rockefeller University

Ion channels catalyze the diffusion of inorganic ions down their electrochemical gradients across cell membranes. Because the ionic movements are passive, ion channels would seem to be extraordinarily simple physical systems, yet they are responsible for electrical signaling in living cells. Among their many functions, ion channels control the pace of the heart, regulate the secretion of hormones into the bloodstream, and generate the electrical impulses underlying information transfer in the nervous system.

Pages


The page was last updated on Monday, February 11, 2019 - 2:31pm