Skip to main content
 

NIH Director’s Lecture

As part of NIH’s Wednesday Afternoon Lecture Series, the Director’s Lectures feature leading researchers from around the globe. Nominated by scientists and interest groups throughout NIH, the NIH Director specifically approves these annual lectures. There are approximately three NIH Director’s Lectures per year.

Autoantigens and autoimmunity: a bedside to bench and back again story

February 27, 2019 - 3:00pm to 4:00pm
Sandra L. Wolin, M.D., Ph.D., National Cancer Institute

Noncoding RNAs play critical roles in the metabolism of all cells. The Wolin laboratory studies how noncoding RNAs function, how cells recognize and degrade defective noncoding RNAs, and how failure to degrade these RNAs affects cell function and contributes to human disease. Their studies revealed new mechanisms by which defective RNAs are targeted for degradation and new classes of noncoding RNAs. Most recently, their work has contributed to a novel theory for how the autoimmune disease systemic lupus erythematosus may be triggered in genetically susceptible individuals.

Cancer and aging: rival demons?

February 13, 2019 - 3:00pm to 4:00pm
Judith Campisi, Ph.D. , Buck Institute for Research on Aging

Cancer and aging are intricately intertwined. Organisms with dividing cells are at a substantial risk for developing cancer. Evolution “solved” the cancer problem by selecting for tumor suppressive mechanisms, which protect these organisms for cancer – at least for the reproductively active portion of the life span. Beyond that portion of the life span, these mechanisms can drive pathologies associated with aging, including, ironically, cancer. For her lecture, Dr.

Exploring adult brain plasticity following adverse developmental conditions

June 13, 2018 - 3:00pm to 4:00pm
Elizabeth Gould, Ph.D., Princeton University

Our laboratory studies structural plasticity in the adult mammalian brain. We are interested in identifying the environmental, hormonal and neural stimuli that drive changes in the number, shape and size of neurons, astrocytes and microglia. The ultimate goals of our work are to determine the functional consequences of structural plasticity and to identify factors that enhance plasticity and cell survival in the adult mammalian brain.

Gut reactions: host microbiome interactions in the intestine in health and disease

March 14, 2018 - 3:00pm to 4:00pm
Fiona Powrie, D.Phil., University of Oxford

The gastrointestinal tract is home to a large number and vast array of bacteria that play an important role in nutrition, immune-system development, and host defense. In inflammatory bowel disease there is a breakdown in this mutualistic relationship resulting in aberrant inflammatory responses to intestinal bacteria. Studies in model systems indicate that intestinal homeostasis is an active process involving a delicate balance between effector and immune suppressive pathways. For her presentation, Dr.

The molecular logic of synapse formation in the brain

January 31, 2018 - 3:00pm to 4:00pm
Thomas Christian Südhof, M.D., Stanford School of Medicine

Thomas Südhof is interested in how synapses form and function in the developing and adult brain. His work focuses on the role of synaptic cell-adhesion molecules in establishing synapses and shaping their properties, on pre- and postsynaptic mechanisms of membrane traffic, and on impairments in synapse formation and synaptic function in neuropsychiatric and neurodegenerative disorders.

Biophysics and biology of k+ channels

September 27, 2017 - 3:00pm to 4:00pm
Roderick MacKinnon, M.D., Rockefeller University

Ion channels catalyze the diffusion of inorganic ions down their electrochemical gradients across cell membranes. Because the ionic movements are passive, ion channels would seem to be extraordinarily simple physical systems, yet they are responsible for electrical signaling in living cells. Among their many functions, ion channels control the pace of the heart, regulate the secretion of hormones into the bloodstream, and generate the electrical impulses underlying information transfer in the nervous system.

Adventures in brain plasticity: from memory palaces to soulcycle

December 7, 2016 - 3:00pm to 4:00pm
Wendy A. Suzuki, Ph.D., New York University

Suzuki’s lab studies the patterns of electrical activity in the brain that underlie our ability to form and retain new long-term memories as well as the effects of physical aerobic exercise to improve a wide of cognitive functions including mood, memory, and attention.

Engineering T cells: moving beyond leukemia

September 28, 2016 - 3:00pm to 4:00pm
Carl June, M.D. , University of Pennsylvania

It is now well established that the immune system can control and eliminate cancer cells. Adoptive T-cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Dr. June will discuss how the emerging discipline of synthetic biology—which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities—can be applied to cancer.

Ancient DNA and the new science of the human past

September 21, 2016 - 3:00pm to 4:00pm
David Reich, D. Phil., Harvard Medical School

Beginning in 2010, it became practical to sequence whole genomes extracted from DNA extracted from ancient human bones, and to analyze the data to understand changes in biology over time. Since then, the amount of ancient DNA data has increased at an extraordinary rate, with the number of samples with at least one-fold genome coverage being five in 2013, 18 in 2014, and 116 in 2015. Dr. Reich will begin his lecture by describing how present-day Europeans derive from a fusion highly divergent ancestral populations as different from each other as are Europeans and East Asians.

Translating the cancer genome: transforming cancer care

March 30, 2016 - 3:00pm to 4:00pm
Elaine R. Mardis, Ph.D. , Washington University School of Medicine

Dr. Mardis has research interests in the application of next-generation sequencing to characterize cancer genomes and transcriptomes, and using these data to support therapeutic decision-making. She also is interested in facilitating the translation of basic science discoveries in cancer into the clinical setting.

Pages


The page was last updated on Thursday, January 29, 2015 - 2:28pm